
1

Free-Flow: Unintrusive Reading Device
for a Printed Text

Hae Jin Song (hjsong@mit.edu)
Suvrit Sra (suvrit@mit.edu)

Abstract—This project develops a software for a handheld,
pen-style device that allows a reader to click on words in printed
texts and look up the definitions. Unlike most of the current
stylus pens for digital devices, our device targets printed texts,
which makes it a more attractive and useful reading aid for a
larger group of readers. The software implements four major
actions, “Capture”, “Preprocess”, “Extract (OCR engine)” and
“Search”. It is a completely offline software which uses the
camera hardware installed in most modern mobile devices. Users
use our Android application to first capture the word to search
on the printed text. The captured image is scaled and binarized in
the Preprocess module. Then, the OCR engine, which is trained
on the provided training data, recognizes the word. Lastly, the
word is searched on a dictionary stored in the burst trie data
structure. The technology used in each of Free-Flow’s main
modules existed over a decade, but Free-Flow is the first end-to-
end system that combines them together to create a full pipeline.
It reduces the latency and energy consumption by removing
any unnecessary networking connections, improves the accuracy
of the Optical Character Recognition (OCR) via preprocessing,
and supports a fast closest match search. It achieves a high
recognition accuracy of 95.25% on average, is robust against
different ambient lightings and is responsive with a small latency
of 1.11 second. Its achievements open up the new possibilities to
take advantage of mobile devices to make reading on the printed
texts more interactive and intuitive.

I. INTRODUCTION

INCREASING computational power and memory of mobile
devices have enhanced the reading experiences on smart-

phones, tablets, and Ebooks. Users of such digital devices have
access to software which can quickly look up definitions by
selecting the words directly on the screen. The results are often
displayed on top of the digital text. As a result, the users don’t
need to leave their current screen during the interaction, and
their reading flow is not disrupted by the search. Unfortunately,
there is no such tool for traditional texts such as paperbacks,
printed newspapers, and magazines. If they want to look up
a word while reading, they have to stop and look up the
dictionaries themselves on online or paperback dictionaries.
This process forces them to jump back and forth between their
text and dictionaries (or computer screens), thus interrupting
the reading flow. This intrusive and cumbersome transition
cause an inevitable tradeoff between the quality of reading
experience and the level of comprehension.

We feel a strong need to bridge this technical gap for the
printed texts and aim to build a new tool that can minimize
such intrusive transitions and help maintain a continuous
reading flow. We chose the readers of the printed texts in their
non-native languages as the main target of our project. We

used hardware already available in most of the modern mobile
devices and developed the software, Free-Flow, that performs
image-processing, the Optical Character Recognition (OCR)
and a fast closest match search on a dictionary. It runs on the
Android platform, and it is now available for download from
Google App Store. On average, Free-Flow achieves a short
response time of 1.117 seconds up on the user’s request and
95.25% recognition accuracy of the selected word in various
ambient settings. The application is simple yet robust and does
not require any additional hardware or network connectivity.
Its accuracy is consistent in three different lighting settings
(cloudy outdoor, sunlit indoor, normal indoor) and robust
against camera noise and user’s handshakes.

Free-Flow consists of four major modules, “Capture”,
“Pre-process”, “Extract” and “Search”. The first module,
Capture, takes a picture of the scene around the word that a
user wants to search. The second module, Pre-process rescales
and binarizes the image using a median filter. Binarization
refers to the conversion of pixel values from color to black
and white so that the resulting image is a collection of 0 (for
black pixels) and 1 (for white pixels). Then, the binary image
is run through the OCR engine based on Tesseract in order to
extract a string of characters during the Extract module. The
final module, Search, performs a closest match search on the
recognized word and displays back the definition to the user’s
screen on the same mobile device.

Fig. 1. A user holds the mobile device to capture the word to search



2

II. RELATED WORK

A. OCR and Tesseract

Optical Character Recognition OCR refers to the conver-
sion of images of text printed, typedorhandwritten to a
machine-encoded string of characters. It has a wide application
in systems like robot navigation, document analysis, and object
categorization and has been an active field of research in
Computer Vision. However, it still remains a difficult problem
especially in a noisy environment such as damaged documents
or low resolution of the scanning device. The challenge in our
project is that the mobile device a user will use to capture the
image is susceptible to the user’s hand shakes and different
lighting settings. In addition, mobile devices have limited
computational resources and memory space and require a
quick response time to be usable in practice.

The core of our OCR engine is based on the state-of-the-
art OCR system Tesseract. Its four major features are the
adaptive thresholding, the line finding, feature/classification
methods, and the adaptive classifier [2]. Figure 2 shows the
workflow of Tesseract. When it receives an input image, it first
binarizes the image via adaptive thresholding. Then, it runs a
connected component analysis during which the outlines of the
components are gathered together into Blobs. The third step is
to organize these blobs into text lines, which are then broken
into words. Once the Tesseract has a collection of words, it
initiates the recognition phase through a two-pass process [2].
In the first pass, Tesseract attempts to recognize the word as
in the conventional recognition stage.

Fig. 2. Workflow of Tesseract engine 1

Only the words that are reasonably well recognized in
the first stage are passed into an adaptive filter as training

1https://blog.cedric.ws/how-to-train-tesseract-301

data. The result of this first stage is a set of training data
and the adaptive classifier trained on the training data. In
the second stage, the adaptive classifier performs a second
pass of the entire page and attempts to recognize words that
are not recognized correctly in the first pass. Previous tests
on vehicle number plates confirm Tesseract achieves higher
percent accuracy and faster processing speed than another
popular OCR engine, Transym [3]. This performance is also
supported by the evaluation by a group of researchers in
Pozna Supercomputing and Networking Center, Poland. Their
evaluation shows that Tesseract’s performance achieved higher
accuracy of 75% to 88% [1]. Based on this evaluation, we
chose to build our OCR engine using Tesseract’s Android
library, tess-two.

Previous work has been done in both academia and industry
to improve the Tesseract’s accuracy. We looked at the in-
corporate document-specific modeling [4,5,6], which adjusts
the system to the input document’s fonts, lexicons and noise
models. Another approach worth mentioning is to train the
recognizer on a pre-selected training data that only include
high-precision characters which were correctly recognized
from different OCR systems [7].

B. Image processing

The captured image must be pre-processed before the OCR
engine to achieve high accuracy. Gross and Brrajovic introduce
an image preprocessing algorithm for illumination invariant
face recognition in ??. The algorithm is simple but suc-
cessfully mimics the human visual system by computing the
estimate of the illumination field and then compensates for it.
Based on their experiments on multiple face databases includ-
ing the Yale database, the algorithm improves the accuracies of
standard face recognition algorithms and maintains improved
accuracies under different lightings. Another approach is to
apply Kalman filter to compute a face class average that
better represents unique facial features ??. However, this
illuminance-invariant image processing is not suitable for our
application as it requires a large computational power and
takes longer than the desired response time of no longer
than 2 seconds. As discussed in Section VI, we found that
mean and median filters are simple to implement while still
performing well enough for a high recognition accuracy. These
filters better satisfy our constraints on computational power
and response time.

C. Closest match search

An intuitive way to implement search is to construct a
hashmap with the key of a string of characters and the value
of the corresponding definition. Hashing provides a fast search
in amortized constant time, yet it does not preserve any order.
Consequently, it is not suitable for a closest match search. An
alternative data structure that provides a fast search as well
as an access to the closest neighbors at each node is Trie.
Consider the case of searching for a word whose maximum
length can be M in the text containing N words. The time
complexity of a trie is O(M), which is linear in the length
of the word to be searched. Since the search word is usually



3

Fig. 3. Main Screen: 1.ViewBox defines the word
boundary; 2.Camera button triggers the image cap-
ture; 3. Focus button refocuses the camera on the
ViewBox.

Fig. 4. Preprocessed image of the capture word
and the OCR detected characters are displayed.

Fig. 5. The detected word is searched in the dic-
tionary stored in the Trie data structure to facilitate
the closest match search

very short in our case, this is nearly a constant time search.
The advantage of a trie over hashing is that it supports the
prefix search, which allows users to find all words with the
same prefix. An example of the prefix search is Google’s
search box which provides a list of suggestions as a user
types. However, a trie has a large space complexity as it
requires O(Alphabet ∗ M ∗ N) space. For example, if an
English dictionary is to be stored in a trie, each node will
correspond to a character of a word with 26 (i.e. the size of
the alphabet) pointers for its children. Due to the memory
constraint of mobile devices, a trie’s large space complexity
is not suitable for our purpose. A better option is a Ternary
Search Tree (TST). TST is a special trie whose child nodes
are ordered as a binary search tree. It supports trie’s operations
such as prefix search and closest neighbor search. The biggest
advantage of TST over a trie is that it uses less space. For
instance, if we use a TST to store a dictionary, each node
contains only 3 pointers. The first pointer points to the node
whose value is less than the value in the current node, the
second pointer to the node whose value is equal to the current
value and the third pointer to the node whose value is greater
than the current value.

D. Similar end-to-end system

Currently, there is no end-to-end system that performs a
quick search of a word in the printed text using a hand-held
device. The closest system is the state-of-art Google Translate

with the technology first developed for Word Lens. Word
Lens is a mobile application that translates the road signs in
foreign languages and overlays the translated information on
the smartphone screen. Other pen-like devices such as IRISPen
and Wizcom InfoScane Pen Scanner focus on digitizing a bulk
of texts (lines, paragraphs or pages). We were not able to find
an end-to-end product which focuses on detecting a single
word from the middle of a text. Free-Flow is distinguishable
from currently available tools in that it is a first full end-to-
end system that brings together the image processing, OCR
and Search algorithms to support a robust recognition of a
word in the printed text.

III. OVERVIEW

Free-Flow is a mobile application that consists of four major
modules: Capture, Pre-process, Extract and Search. It uses
a built-in camera to capture the word and does not require any
other additional hardware or network connectivity. It performs
a highly accurate recognition and a fast closest match search.
In order to use it, a user selects a word to search by holding
his mobile device on top of the reading material (Figure 1).
The application uses the built-ins camera and allows the user
to capture the word to search and control the camera’s focus
if needed. He can easily interact with the main UI (Figure
3) via screen touch to set the word boundary and refocus the
camera. The main UI consists of a ViewBox(1, Figure 3), a
Camera button(2, Figure 3) and a Focus button(3, Figure 3).



4

The ViewBox is draggable and is used to set the boundary of
the word to capture. The Focus button refocuses the camera,
and the Camera button takes a picture of the scene in the
ViewBox. The application is initiated by the user’s click on
the Camera button. It then preprocesses the captured image
(Pre-process) and extracts a string of characters via the OCR
engine based on Tesseract (Extract). The recognized word is
then searched on the dictionary via the closest match search
(Search), and the final result (i.e. the definition) is displayed
back to the user on the screen.

IV. SYSTEM ARCHITECTURE

Free-Flow’s system has four main modules: Capture, Pre-
process, Extract, and Search. Upon the user’s click of the
Camera button, the scene within the ViewBox 1, Figure 3) is
captured and processed in preparation for the OCR engine.
The preprocessing involves scaling and binarization via a
median filter. More details will be discussed in Section V.
The processed binary image is passed on to the OCR engine
which is trained on the provided training data. Our application
allows users to provide new user-specific training data and
can be easily extended to recognize different languages. The
results of image processing and the OCR engine are displayed
back on the screen as shown in Figure 4). The dictionary is
stored in memory in the burst trie data structure to facilitate
the closest match search with the minimum space required.
Finally, the result is displayed on the screen (Figure 5).

V. TECHNICAL APPROACH

Free-Flow consists of four major modules, “Capture”,
“Pre-process”, “Extract” and “Search” as shown in Figure
6). In this section, we explain each module in details.

The first module, Capture, is initiated by a user’s click
on the Camera button in the main UI (1, Figure 3). It takes
an image of what the camera views (“scene”) with the focus
adjusted as the user clicks on the Focus button (2, Figure 3).
Restricting the region of interest to the ViewBox reduces the
amount of computation and reduces the response time. It also
achieves more locally optimized pre-processing and improves
the quality of the binarization as discussed in the following.

The second module, Pre-process, scales and binarizes the
captured image. Binarization is the conversion of pixel values
from color to grayscale. First, the image is scaled by taking
into account the camera resolution, screen resolution and
ViewBox size. We assume the mobile device is placed at the
minimal focal distance away from the text and has a fixed
zoom level. These assumptions are reasonable and serve well
in practice since users tend to position their mobile devices
as close to the text as possible (that is, at the minimal focal
distance), and the zoom level is fixed as our design choice.
Since the OCR Engine is trained on the font size of 12pt (0.167
in), this scaling is important to enhance the performances of
the subsequent OCR operations.

After the image is scaled, we apply a median filter to find
the threshold for binarization. The median filter chooses its
threshold to be the median of the captured image’s pixel
values. It then binarizes the image by assigning the pixels

Fig. 6. Users’ click on the Camera button initiates the camera to capture the
scene. The image is then preprocessed, and the OCR engine extracts a string
of characters, which is searched on the dictionary to find the closest match.
The matched word’s definition is displayed on the user’s sceen

with values higher than the threshold to 1 and those with lower
values to 0. We tested both mean and median filters and found
out that the median filter achieves a more robust binarization.
The qualitative comparison of the two filters are discussed in
Figure 8 in Section VI. A median filter is simple to implement
and computationally efficient as our image size is small (1120
pixels on average). Its benefits are discussed in Section VI.

The third module, Extract, is the OCR engine that performs
the character recognition using Tesseract for the Android
platform, Tess-Two 2. This module is key to our application
as it decides which word to look up in the dictionary. The
recognizer must be trained in advance with specific language
data. The Tesseract project provides large amounts of train
data in various languages 3, which are available to the public.
We used the English train data to train our recognizer, yet the
scope of recognition can be easily extended to other languages
by training the recognizer on new train data. If a user-specific
recognizer is needed (for instance to recognize a handwriting
or rare fonts), users can collect the data and construct the
training data using Tesseract’s libraries. The training data are

2https://github.com/rmtheis/tess-two
3https://github.com/tesseract-ocr/langdata



5

used to construct “Bounding Boxes” around each character and
extract the structure during the component analysis process
(Figure 2). We already provide 2,3-gram language data during
the training. For example, the 2-gram language data is a list of
2-grams (such as “QU”, “TH”, “BE”) with their frequencies
in the sorted order. It informs the OCR engine which character
is more likely to appear based on the surrounding characters.
After the OCR engine finishes the recognition task, it passes
the recognized string of characters to the Search module.

The fourth module, Search, performs a closest match search
of the recognized word in the dictionary. We first scrapped
the word-definition pairs from the Oxford English Dictionary
and stored them in the burst trie structure. As explained in
Section II, a burst trie is a variant of a trie data structure that
is highly efficient for managing strings in memory. Its time
complexity of search is linear in the length of the searched
word, which is usually very short, and it uses no more space
than a standard tree or a hash table [11]. More importantly,
unlike a hash table, it preserves the sort order and can be
implemented to support prefix search and closest match search.
The fast search and improved space complexity well satisfy the
constraints of our application. Using the insertion and bursting
algorithms as described in [11], we constructed the burst trie
with the contents of the Oxford English Dictionary. When
the Extract module finishes, the recognized word is searched
in the dictionary in two distinct stages as described in the
Search algorithm in [11]. First, the leading characters of the
recognized word are used to access the correct container of
the burst trie. Then, the rest of the characters are used to
search the record, or the closest neighbor if no exact match is
found, within the container. The result (i.e. definition) is then
displayed back on the user’s screen as shown in Figure 5.

VI. EVALUATIONS

The design goal of our project is to build a simple yet
accurate and robust software for a fast search on the printed
texts. Free-Flow achieves these goals in four stages, Capture,
Pre-process, Extract, and Search. In this section, we evaluate
its performance measured by the recognition accuracy and
runtime for each module. For evaluation, we generated two
random test texts with 1000 words from our dictionary, one in
Ubuntu font and the other in Times New Roman font. The test
texts are available in the Github repository for the project, 4.
We tested Free-Flow on each test text under three different
lighting settings: cloudy outdoor, sunlit indoor and normal
indoor. Detailed analyses of the results are as follows.

A. Pre-processing

The Pre-process module of Free-Flow performs scaling and
binarization. Our preliminary test without scaling achieved less
than 50% of recognition accuracy. This low accuracy is caused
by the difference in the font size between the captured word
and the training data. The public training data available at
Tesseract project’s GitHub 5 is constructed from a single font

4https://github.com/cocoaaa/free-flow.git
5https://github.com/tesseract-ocr/tessdata

Fig. 7. Free-Flow’s accuracy is tested on two fonts (Ubuntu and Times New
Roman), each under three different lightings: cloudy outdoor, sunlit window
side of a library, and normal lecture hall. The average accuracy is at minimum
88% and on average 95.25%. It is higher on the test text in Times New Roman

size (12pt). We tested mean and median filters during the
pre-processing of the captured images on each experiment.
The median filter achieved more robust binarization while
their runtime difference was less than 0.001 second and
was considered negligible. Figure 8 shows the qualitative
comparisons of the results. As shown in the figure, the median
filter preserves more foregrounds (i.e. black letters) and is less
susceptible to the thinning effects of the edges. This effect
is due to the lower threshold detected by the mean filter as
printed texts often consist of more white backgrounds than
black foregrounds. Consequently, the median filter preserves
the original shape of the characters better and helps the OCR
engine to recognize the word with higher accuracy. We also
tested Otsu thresholding [10] for binarization. The processed
image and the detection accuracy were similar to the median
filter, but the runtime was nearly 7 times slower.

B. Recognition accuracy and robustness

The recognition accuracy was measured by comparing the
distance between the detected word and the ground truth (i.e.
the word printed on the test text). We used the Levenshtein dis-
tance(LD) as the distance metric. Levenshtein distance is de-
fined as the minimum number of single-character transforma-
tions (insertions, deletions or substitutions) required to change
one word to another ??. For example, LD(“hop”,“happy”) is
3, LD(“hole”, “hoe”) is 1 and LD(“sky”,“ski”) is 1. We tested
Free-Flow on 35 words from the two test texts (Ubuntu and
Times New Roman) under three different lighting settings.
Table ?? and Figure 7 show the recognition accuracies.

Font cloudy outdoor sunlit indoor normal indoor Average
Ubuntu 88.7 92.89 94.82 92.14
TNR 97.2 98.99 98.8 98.36

TABLE I
FREE-FLOW’S RECOGNITION ACCURACY ON TWO DISTINCT FONTS

UNDER THREE DIFFERENT LIGHTINGS

The results from the three different lighting settings 7 show
that Free-Flow’s recognition is robust under different ambient
lightings. Since the median filter’s performance is barely
affected by the ambient lightings, it allows the OCR engine
to extract correct words in different environments. The cloudy



6

Fig. 8. Images preprocessed by mean and median filters. Mean filter thins out some of the characters and leads to recognition errors.

outdoor setting results in the lowest accuracy as it causes the
threshold of the median filter to decrease and affects more
character pixels to be binarized as white. This makes the edges
of the characters thinner and as shown in Figure 8 and confuses
the OCR engine. Figure 7 and Table ?? show the results of the
median filter. Overall, it achieves a high recognition accuracy
of 95.25% on average and performs consistently in different
lighting settings.

C. Runtime analysis

The runtime of each module and the size of the captured im-
ages are recorded during our experiments. Each measurement
is first calculated per pixel and adjusted to the fixed image
size of 1000 pixels. We chose 1000 pixels as it is a close
approximation of the average image size, 1120 pixels. Table
II shows each module’s average runtime.

Module Pre-process Extract(OCR) Search Total
Runtime(s) 0.001866 1.102 0.0129 1.117

TABLE II
RUNTIME ANALYSIS OF EACH MODULE PER 1000 PIXELS

As Table II shows, the Extract module is the bottleneck of
the runtime. The pre-processing and the closest match search
run in three and two magnitudes faster, respectively and do
not affect the response time in a noticeable way. This result
is as expected since the Extract module performs a series of
more complicated computations such as connected component
analysis and two passes of word recognition 2.

VII. FUTURE RESEARCH QUESTIONS

A. Extension of language coverage

Free-Flow can be easily extended to cover different lan-
guages. The only modification required to support a new
language is appropriate training data. Tesseract provides train-
ing data for over 27 languages 6 as well as tools to help
construct a user’s own training data. With extended training
data, Free-Flow can serve as a multilingual translator . More
interesting work will involve hand-written letters. Currently,
recognizing handwritings is considered a much harder problem
than recognizing typed characters. User-specific handwritings
can be collected and processed to construct training data to
further customize Free-Flow.

B. Speedup of the Extract Module

As discussed in the Evaluation section, the current runtime
of Free-Flow is limited by the Extract module. More work
can be done to simplify some functionalities of the OCR
engine to speed up the process. The tradeoff between the
runtime and accuracy/robustness for each submodule within
the Extract Module will be informative to future researchers
applying OCR to their systems.

C. Automated Word Detection

Currently, users must drag and resize the ViewBox in order
to select a word, and they often need to refocus the camera
multiple times. In the future, the size of the ViewBox and

6https://github.com/tesseract-ocr/tessdata



7

the camera focus can be automatically adjusted to make the
pipeline more fully automated. It is a challenging research
question how to infer which word in the middle of texts lies
under the user’s focus.

D. More robust search

The current search algorithm finds the closest match only
in the scope of the dictionary. As a result, if the recognized
word is farther away from the actual word than the closest
match in the dictionary, the result of the search is incorrect. A
more robust search can be implemented by performing spell-
check before a search or runs two passes of search where the
result of the first search can be used to return a list of possible
words and the second search can be informed by the first pass.
Statistical linguistic models can be augmented as a heuristic
for a faster search.

E. Faster search

A different data structure such as a cache-conscious HAT-
trie [13] can bring more speed up to the search.

VIII. CONCLUSION

We have described Free-Flow, a full end-to-end mobile
application that brings together image-processing, OCR and
Search algorithms to quickly search a word in the printed texts.
Free-Flow uses a built-in camera of an Android smartphone
and fully functions without any network connectivity. Its
system consists of four main modules, Capture, Pre-process,
Extract, and Search. Users hold their mobile phones to
take a picture of the word to search (Capture). The captured
image is appropriately scaled and binarized through a median
filter (Pre-process). The OCR engine based on the Tesseract
engine is trained on the default (or user-provided) training
data. Upon the binarization of the captured image, it performs
connected component analysis and two rounds of adaptive
recognition to extract a string of words (Extract). Free-Flow
can be easily extended to support other languages by adding
training data for the target languages including user-specific
fonts like handwritings. Once a word is recognized by the
Extract module, it is searched on the dictionary via closest
match search algorithm. The dictionary is stored in a burst trie
data structure in memory. The burst trie achieves a fast search
with time complexity linear in the length of the search word
and preserves the alphabetical sort order to support the closest
match search. It is much more space-efficient than a standard
trie as it achieves the same space complexity as a standard
tree or a hash table. Our experiments on test texts in Ubuntu
and Times New Roman under three different lightings show
Free-Flow achieves 95.25% recognition accuracy on average
and maintains is robust against ambient lightings. Its response
time is on average 1.117 sec on 1000 pixels, which is an
approximate average size of the captured images. Free-Flow
thus proves the viability of the idea to take advantage of mobile
devices to make a search on the printed texts more unintrusive
and interactive.

REFERENCES

[1] M.Heliski, M.Kmieciak and T.Parkoa, “Report on the comparison of
Tesseract and ABBYY FineReader OCR engines,” in PCSS, 2012.

[2] Ray Smith, “An Overview of the Tesseract OCR Engine,” in Proc. Ninth
Int. Conference on Document Analysis and Recognition (ICDAR), IEEE
Computer Society, 2007, pp. 629-633.

[3] Chirag Patel, Atul Patel, and Dharmendra Patel. “Optical character recog-
nition by open source OCR tool tesseract: A case study,” in International
Journal of Computer Applications 55.10, 2012, pp 50-56.

[4] J. Edwards and D. Forsyth. “Searching for character models,” in Neural
Information Processing Systems, 2005.

[5] T. K. Ho. “Bootstrapping text recognition from stop words,” in Interna-
tional Conference on Pattern Recognition, 1998.

[6] T. K. Ho and G. Nagy, “OCR with no shape training,” in International
Conference on Pattern Recognition, 2000.

[7] Andrew Kae et al, “Improving state-of-the-art OCR through high-
precision document-specific modeling,” in Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on. IEEE, 2010.

[8] Gross, Ralph, and Vladimir Brajovic, “An image preprocessing algorithm
for illumination invariant face recognition,” in Audio-and Video-Based
Biometric Person Authentication. Springer Berlin Heidelberg, 2003.

[9] Eidenberger, Horst, “Illumination-invariant face recognition by Kalman
filtering,” in Multimedia Signal Processing and Communications, 48th
International Symposium ELMAR-2006 focused on. IEEE, 2006.

[10] Jian, Gong, Li Liyuan, and Chen Weinan, “A fast recursive algorithm
for two-dimensional thresholding,” Signal Processing, 1996., 3rd Inter-
national Conference on. Vol. 2. IEEE, 1996.

[11] Heinz, Steffen, Justin Zobel, and Hugh E. Williams, “Burst tries: A fast,
efficient data structure for string keys”, ACM Transactions on Information
Systems (TOIS) 20.2 (2002): 192-223.

[12] Levenshtein, Vladimir I, “Binary codes capable of correcting deletions,
insertions, and reversals,” Soviet physics doklady. Vol. 10. No. 8, 1966.

[13] Askitis, Nikolas, and Ranjan Sinha, “HAT-trie: a cache-conscious trie-
based data structure for strings,” Proceedings of the thirtieth Australasian
conference on Computer science-Volume 62. Australian Computer Society,
Inc., 2007.


