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Abstract

In order to study the properties of cells, microfluidic sys-
tems manipulate cells such that the cells with different prop-
erties can be distinguished either in their distribution over
space or over time. Therefore, the analysis of cell trajec-
tories inside microchannels is a critical part of many mi-
crofluidic systems. While Open Source and commercial cell
detection and cell tracking softwares are available, these
softwares are largely limited to specific applications, e.g.
the contrast requirement between cells and background,
bright-field versus fluorescent imaging, number of cells that
can be tracked, etc. Automated and robust cell detection
and tracking algorithms are needed to reliably extract cell
positions over time for general applications. In this report,
we demonstrate the ability of our machine-learning detec-
tion algorithm to detect cells and compare it to the classic
image segmentation method. Classic image segmentation
method shows robust detection of cells that meet the crite-
ria in terms of size and intensity where machine learning
algorithm demonstrates higher flexibility for cell imaging
conditions.

1. Introduction
Oftentimes microfluidic systems are designed such that

the interested properties of cells are encoded in their po-
sitions relative to the reference point or relative to time
frames. A key step of this process is; therefore, the de-
tection and labelling of cells versus background and noise.
Cell detection is a challenging task the exploration of inno-
vative methods including machine-learning techniques is of
interest due to the following reasons. First, cells are het-
erogeneous. They vary in size, shape, and optical trans-
mittance. The heterogeneity of cell populations are re-
flected in their image representation. In fluorescent imag-
ing, cells are labelled with fluorophores and the fluorescent
emittance significantly helps distinguish between cells and
background. However, in bright-field imaging, cells are not
labelled and their images exhibit less contrast to the back-

ground. Images of cells that are small and highly trans-
missive are harder to detect because they show less con-
trast to the background and sometimes have smaller areas
than the thermal noise, which renders the classic intensity
thresholding and area thresholding method impossible. Sec-
ond, cells are deformable objects. With pressure from the
fluid flow, cells are squeezed through the channels that are
narrower than their diameters and can easily change shape
from regular circles to distorted circles and ovals, depend-
ing their surrounding channels. Lastly, there are some ex-
perimental limitations in video recording such as thermal
noise and slight changes of illumination or channel posi-
tions over time which means that the thresholding parame-
ters need to be tuned differently for fluctuating experimen-
tal conditions. Fine-tuning these thresholding parameters
can become burdensome for increasing numbers of experi-
ments and recordings. The robustness of machine-learning
classification and detection techniques have been shown as
they are used to solve several complex problems in image
processing such as object recognition, scene recognition,
scene analysis. Machine-learning classification and detec-
tion techniques may offer solution to the cell detection prob-
lems.

2. Related Work
With the advances in optics and imaging systems, there

is an increasing interest from biomedical researchers to vi-
sualize their experiments by automatically detecting and
tracking the cells in a sequence of images. Such automatic
process removes the burden of manual inspection and could
even detect objects unrecognizable by human eyes. Current
state-of-the-art algorithms can be classified into two main
categories: model-based approaches and feature-based ap-
proaches. Model-based detection algorithms create a model
for each object to be detected and update the model as they
observe more data. For example, active contour methods
such as the one based on the level-sets[6] first represent each
object (cell or nucleus) using a separate level-set function.
This approach has proven to be suitable for capturing topo-
logical chances via its model updates. However, it suffers

1



from significant drawbacks in computational cost and in-
ability to capture dynamic changes, especially if the object
undergoes a significant shape change over a short period of
time. These drawbacks limit its applicability to real-world
cell imaging systems. Another example of the model-based
approach is the coupled mean-shift algorithm [5]. This al-
gorithm requires human operators to select cells to be de-
tected and initialize the object appearance models at the ini-
tialization stage. As a video recording of cell experiments
often contain hundreds of target objects, this approach is not
practical. The main strategy of feature-based approaches is
correspondences matching over time, and does not involve
any model initialization of update of the target objects. It
first segment and locate images and then associate the tar-
gets among frames over time. Intensity thresholding [4],
gradient detection, and watershed algorithms are some of
the well-known segmentation methods. This approach has
an advantage in that it does not require any explicit model-
ing, yet is more vulnerable to image noise, artifacts and in-
tensity variations. In particular, it is still an active research
area to find out a robust and efficient way to tune the param-
eters for the feature-based approach. One approach that has
recently been received a lot of attention is to learn from the
data via machine learning techniques. Our project takes this
approach and focuses on compares various feature extrac-
tion methods/filters based on its detection accuracy when
combined with a Support Vector Machine (SVM) classifier
[7].

3. Approach
For our application, we use a common microchannel

structure that replicates the microcapillary network [8]This
channel features represents the general microfluidic chan-
nels that enforce cell deformation. The murine interleukin-
3 dependent pro-B cell line (Ba/F3 cells) is used as the cell
sample. The experiment is observed using Zeiss Micro-
scope with 10X objective and is recorded by 12-bit LAV-
ision Imager QE camera with 1280x320 pixels (resolution
1.07 m per pixel) at the frame rate of 20 frames per second.
The videos are saved as .mat files. All codes are imple-
mented in MATLAB.

3.1. System Structure

Our system first takes one frame of the recorded video,
and crops it into overlapping windows of a fixed size. Each
window is then put through a low-pass filter with symmet-
ric padding for noise reduction. From these smoothed win-
dows, a feature extraction technique is used to extract spa-
tial features. The features are concatenated into one sin-
gle vector per window. The feature vector is used for Sup-
port Vector Machine (SVM) binary classification after be-
ing standardized by centering and dividing columns by their
standard deviations. The SVM model is trained using a lim-

ited hand-labeled dataset from pre-recorded videos. Thresh-
olding and non-maxima suppression is then used based on
the spatial distribution of the windows marked as contain-
ing a cell by SVM to obtain one set of [x,y] coordinate per
cell in the original frame of the window. The coordinates of
cells are used as inputs to cross-frame tracking algorithms.

3.2. Acquisition of Dataset

The training and validation dataset is acquired in a semi-
automated manner. The script is generated such that each
frame in the video is shown sequentially and the user can
click on multiple locations of cells on each frame. The lo-
cation of cells are saved as the [x,y] coordinates. Windows
of different pixel sizes (16x16, 24x24, 32x32, 40x40, and
48x48) are then placed over each manually-inputted cell
location such that the window and the cell share approxi-
mately the same centers in order to crop the cell regions and
generate the positive training set, which will be called cell
windows in this report. The sliding windows of the same
sizes with the sliding step of 4 pixels are then placed over
the rest of frame (i.e. the regions with no cells) to create the
negative training set, which will be called the no-cell win-
dows. Symmetric padding is applied to each frame before
cropping process begins.

3.3. Performance Evaluation Scheme

1. Model selection and parameter tuning

In order to maximally utilize our limited hand-labeled
dataset, we performed cross-validation with the SVM
trainer using the dataset. False negative and false posi-
tive rates (rFN and rFP, respectively) of labels given by
trained SVM classifier to the cropped windows were
calculated to compare performances of different fea-
ture extraction schemes and determine a subset of us-
able ones.

The cross-validation method was also used to fine tune
some of the parameters associated with each feature
extraction method, as well as the those used in pre-
processing steps.

2. Cell detection and tracking performance

Quantitatively, the number of cells that are detected,
those are missed, and false detections are recorded in a
test video from 150 frames of a video recorded in a dif-
ferent experiment than the one from which the training
and validation set is acquired. The correction detection
(true positive) rate is then calculated as an estimated
expectation.

Qualitatively, we compare the results from background
subtraction plus intensity thresholding and our pro-
posed machine-learning approach by visualizing the
cell detection and tracking results of both methods in
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(a)

(b)

Figure 1: Crop window size study: Percentage error rates
as crop window size increases for (a) 4x4 HOG window
and for (b) 8x8 HOG window.

videos using the same input frames. In particular, we
look for whether our approach makes improvements
in aspects that are shortcomings of the non-machine-
learning algorithm.

4. Experimental Results
4.1. Pre-Processing

1. Cropping Window Size
Cropping window size is an important parameter since
the cropping window size determines the cell-area-

(a)

(b)

Figure 2: Gaussian filter study: (a) cell and no-cell windows
after gaussian filter with different standard deviation is ap-
plied. (b) Percentage error rates versus the applied standard
deviation

to-background-area ratio. Different cropping window
sizes (16x16, 24x24, 32x32, 40x40, and 48x48) are
used to create the training set in order to optimize this
ratio. Figure 1a and Figure 1b show the inverse re-
lationship between rFN and rFP as crop window size
varies for both the 4x4 and 8x8 HOG feature extrac-
tion. A crop window with the width of 16 pixels,
which is only slightly larger than the cells, is less af-
fected by background channel features than the crop
windows of larger widths, but because of the smaller
width, the 16x16 crop window is more susceptible to
thermal noise in the images.

Furthermore, number of the extracted features per win-
dow increases with the crop window size and can in-
crease the computational complexity of the classifier.
In order to balance the rFN and the rFP as well as the
computational complexity, we use the 32x32 crop win-
dow as the default training set unless specified other-
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wise.

2. Denoising Filter
The effects of thermal noise in the images and conse-
quently the extracted features can be reduced by ap-
plying the gaussian filter. Gaussian filters with varying
standard deviations (σ = 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6)
are used separately before each frame is cropped.
Note that the Gaussian filter window size is set to be
six times the standard deviation and that symmetric
padding is used for the image borders. Figure 2 il-
lustrates the rFN and rFP trends as the standard devi-
ation changes. The rFN and rFP are minimal at the
standard deviation of 2. As the standard deviation in-
creases from 0 to 2, both rFN and rFP decrease as the
high-frequency noise is attenuated. However, as the
standard deviation increases from 2 to 6, the rFN and
rFP increase as the cell features are also lost or attenu-
ated by the gaussian filter.

4.2. Feature Extraction

1. HOG
The default feature extraction methods that we used in
our experiments with varying pre- and post- process-
ing parameters was Histogram of Oriented Gradients
(HOG). Due to the low resolution of each cell, HOG
cell sizes of [8,8] or greater tends to lose shape infor-
mation of the cells, as is evident when visualizing the
extracted features in Figure 3a. The cross-validation
result further supports this observation by showing that
as cell size gets greater than [8,8], the false negative
rate increases significantly.

2. Dense-SIFT
SIFT is another descriptor that is commonly used for
object detection. However, because both the resolu-
tion of each cell and the contrast of some cells to the
background are very low, the standard SIFT descriptor
[3] sometimes refuses to return any significant feature
points for a cell window, as observed by visualizing
the locations of SIFT features in the training dataset.
Therefore, the SIFT features is not suitable as input to
the SVM trainer.

Dense-SIFT, on the other hand, provides a descriptor
very similar to SIFT but at every location where a de-
scriptor was calculated, instead of choosing only a few
key points [2]. The sizes of extracted features from all
windows are thus consistent and can be used directly
for training a SVM model.

The parameter we varied in using Dense-SIFT is the
size of a SIFT spatial bin, binSize. In general, both
rFN and rFP decrease with decreasing binSize. De-
creasing binSize, however, also increases the compu-

(a)

(b)

Figure 3: 100-fold cross-validation results of HOG feature
study: (a) visualization of the extracted HOG features using
cell size [8,8]; (b) the error rates by varying cell sizes in one
experiment. This experiment was using cropping window
size of [32,32] and gaussian filter with size [9,9] and sigma
of 1.5.

tational complexity by increasing the total number of
length-128 descriptors for each window.

3. Gabor Filter
We also experimented with different sizes of gabor fil-
ter banks. Gabor filters are often used for edge de-
tection and texture analysis and stereo disparity esti-
mation. We hypothesized that we could extract useful
features by filtering inputs with a collection of gabor
filters with different scales and orientations. In partic-
ular, we used 5 different scales and 8 orientations of
gabor filters. In order to select the proper filter size,
we evaluated filter sizes from 3 by 3 to 31 by 31 by
cross-valiation. We constructed features by concate-
nating the gabor features of the input image, and the
feature vectors are normalized to zero mean and unit
variance. Based on the cross-validation, we fixed the
filter size to be 16, and features to be extracted from
the images of window size 16 by 16. These parame-
ters achieved 1.16% false positive rate and 6.67% false
negative rate on the cross-validation.

4. Pre-trained CNNs
The limited size of our manually labeled dataset
(882 cell windows, 6251 no-cell windows) is not
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Figure 4: 100-fold cross-validation results of dense-SIFT
feature study: rFN decreases significantly with decreasing
size of the spatial bin. Among the binSizes that we experi-
mented with, [5,5] had the lowest rFN and rFP rates. This
experiment was using cropping window size of [32,32] and
gaussian filter with size [9,9] and sigma of 1.5.

enough for training a deep convolutional neural net-
work (CNN). Therefore, we experimented with two
pre-trained CNNs, AlexNet [1] and VGG [9].

(a) AlexNet
Ideally, the outputs from the first few layers
would be preferable to use; however, the out-
put feature length from the first few layers of the
package were on the order of 1e5 to 1e6, which
made the computation too complex for our com-
puters to handle. Nevertheless we were able to
implement our algorithm using the outputs from
layers 16 to 22 of the network, and got some level
of success as shown in Table 1. In the future, we
can try use a different AlexNet package or a dif-
ferent platform more suited for CNN implemen-
tations.

(b) VGG
A pre-trained VGG neural network was used to
extract the image features. The last layer of VGG
output was inputted into the SVM classifier. The
optimized rFP and rFN were 0.78% and 8.4%,
respectively. This results was almost comparable
to HOG and other feature extraction techniques
that we used, considering that no parameters in
the VGG were fine-tuned.

5. Summary
Most of the feature extraction techniques we experi-
mented with were able to achieve similar performances

(a) Magnitude of filter responses

(b) Real parts of filter responses

Figure 5: Features extracted by gabor filters at 5 scale and
8 orientations with filter size 16 by 16; column indicates
different orientations, and row indicates different scale

in cross-validation after parameter tuning. The per-
formances could potentially be further improved with
more extensive tuning of the parameters of the feature
extraction scheme, pre-processing steps, and the SVM
trainer.

Most of the feature extraction techniques we experi-
mented with were able to achieve similar performances
in cross-validation after parameter tuning. The per-
formances could potentially be further improved with
more extensive tuning of the parameters of the feature
extraction scheme, pre-processing steps, and the SVM
trainer.

4.3. Post-Processing

With the location information of the windows labeled as
positive by SVM, we removed any positive that is by itself
or with few other positives in its adajancy. This process was
tuned using the first few frames of a video, based on the
fact that the mass majority of such points are false positives.
However, we note that this also resulted in some additional
false negatives in some frames. Then, we keep only the
positive point that has the largest number of adjacent cells
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Feature
Extraction

False
Positive

False
Negative Comments

HOG 0.68% 6.35%

Window size [32,32];
Gaussian [15,15], =2.5;
HOG window [5,5];
100-fold CV

Dense-SIFT 0.56% 0.56%
Window size [32,32];
Gaussian [9,9], =1.5;
binSize = 5; 100-fold CV

Gabor Filter 1.16% 6.67%

Subset of no cell training set
Window size [16,16];
5 scales, 8 orientations,
filter size 16; 10-fold CV

AlexNet 1.31% 17.57%
Window size [32,32];
Layer 16: pool5’; 10-fold CV

VGG 0.78% 8.40%
Window size [32,32];
Gaussian [15,15], =1.5;
averaged 10-fold CV

Table 1: Summary of the feature extraction methods’ per-
formances

(a) SVM output

(b) Thresholding

(c) Non-maxima suppression

Figure 6: Post-processing: (a) direct SVM output include
too many FPs; (b) result after removing any positive that is
by itself, has only 1 other positive in a [3,3] window cen-
tered on it, or has less than 2 other positives in a [5,5] win-
dow centered on it; (c) result after only keeping the positive
point that has the largest number of adjacent cells in each
cluster.

in each cluster of positives surrounding each cell to obtain
[x,y] coordinates of the cell.

4.4. Comparison to Non-ML Image Segmentation
Method

After extracting the x- and y- coordinates from post-
processing, the results are visualized with manual inputs
and non-machine learning image segmentation method.
Please see videos 0001 and 0002 in the supplementary.

Note that green rectangles represent manual inputs. Blue
and red circles represent non-machine learning results and
our machine-learning results, respectively. We have ob-
served that there are some true detections that are de-
tected by both algorithm. Our machine-learning method
has shown improvement in performance for cells that are
clogged and cells that are small and harder to detect by
non-machine learning method. However, there are some
false positives and missed detections that only appear in
our machine-learning method, particularly near the im-
age border. The x- and y- coordinates are also inputted
into our tracking algorithm which has been fine-tuned for
non-machine-learning method (see supplementary videos
0003 for non-machine learning results and video 0004 for
machine-learning results).

5. Conclusion and Future Work
In this report, we have shown that machine learning is

a feasible approach towards cell detection. Various feature
extraction methods gave low FN and FP rates in SVM cross-
validation. The application of using the HOG method on the
test video showed promising cell detection rate. However,
the cross-frame tracking algorithm need to be improved to-
gether with the post-processing steps.

Besides revising the post-processing steps and tracking
algorithm, future directions also include increasing the size
of the manually labeled dataset to achieve better general-
ization for SVM training. Non-CNN feature extraction al-
gorithms that detect blobs instead of edges can also be ap-
plied since they can potentially give better performance by
matching the shape of the cells. We can also try training a
shallow neural network using our own dataset.
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